login
A191122
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x are in a.
4
1, 2, 4, 5, 8, 11, 14, 16, 20, 23, 32, 41, 44, 47, 56, 59, 64, 68, 80, 92, 95, 122, 128, 131, 140, 164, 167, 176, 188, 191, 203, 224, 236, 239, 256, 272, 275, 284, 320, 365, 368, 380, 383, 392, 419, 488, 491, 500, 512, 524, 527, 560, 563, 572, 608, 656, 668, 671, 704, 707, 716, 752, 764, 767, 812, 815, 824, 851, 896, 944, 956, 959
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = -1; j = 4; k = 0; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191122 *)
b = (a + 1)/3; c = a/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191168 *)
e = Intersection[c, r] (* A191169 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191122 n = a191122_list !! (n-1)
a191122_list = f $ singleton 1
where f s = m : (f $ insert (3*m-1) $ insert (4*m) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A298990 A360445 A191169 * A191338 A307518 A060773
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2011
STATUS
approved