

A191121


Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x1 and 4x1 are in a.


5



1, 2, 3, 5, 7, 8, 11, 14, 19, 20, 23, 27, 31, 32, 41, 43, 55, 56, 59, 68, 75, 79, 80, 91, 92, 95, 107, 122, 123, 127, 128, 163, 164, 167, 171, 176, 203, 219, 223, 224, 235, 236, 239, 271, 272, 275, 284, 299, 315, 319, 320, 363, 365, 367, 368, 379, 380, 383, 427, 487, 488, 491, 500, 507, 511, 512, 527, 608, 651, 655, 656, 667, 668
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A191113.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


MATHEMATICA

h = 3; i = 1; j = 4; k = 1; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191121 *)
b = (a + 1)/3; c = (a + 1)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191166 *)
e = Intersection[c, r] (* A191167 *)


PROG

(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191121 n = a191121_list !! (n1)
a191121_list = f $ singleton 1
where f s = m : (f $ insert (3*m1) $ insert (4*m1) s')
where (m, s') = deleteFindMin s
 Reinhard Zumkeller, Jun 01 2011


CROSSREFS

Cf. A191113, A191166, A191167.
Sequence in context: A190855 A190810 A278591 * A026401 A069353 A224858
Adjacent sequences: A191118 A191119 A191120 * A191122 A191123 A191124


KEYWORD

nonn


AUTHOR

Clark Kimberling, May 27 2011


STATUS

approved



