login
A191118
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x+3 are in a.
2
1, 7, 19, 31, 55, 79, 91, 127, 163, 223, 235, 271, 319, 367, 379, 487, 511, 655, 667, 703, 811, 895, 943, 955, 1087, 1099, 1135, 1279, 1459, 1471, 1519, 1531, 1951, 1963, 1999, 2047, 2107, 2431, 2623, 2671, 2683, 2815, 2827, 2863, 3247, 3259, 3295, 3403, 3583, 3775, 3823, 3835, 4351, 4375, 4399, 4411, 4543, 4555, 4591
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = -2; j = 4; k = 3; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191118 *)
b = (a + 2)/3; c = (a - 3)/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191114 *)
e = Intersection[c, r] (* A191138 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191118 n = a191118_list !! (n-1)
a191118_list = 1 : f (singleton 7)
where f s = m : (f $ insert (3*m-2) $ insert (4*m+3) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A071696 A216530 A114564 * A298019 A169605 A216532
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2011
STATUS
approved