login
A191115
Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x are in a.
3
1, 4, 10, 16, 28, 40, 46, 64, 82, 112, 118, 136, 160, 184, 190, 244, 256, 328, 334, 352, 406, 448, 472, 478, 544, 550, 568, 640, 730, 736, 760, 766, 976, 982, 1000, 1024, 1054, 1216, 1312, 1336, 1342, 1408, 1414, 1432, 1624, 1630, 1648, 1702, 1792, 1888, 1912, 1918, 2176, 2188, 2200, 2206, 2272, 2278, 2296, 2560, 2920
OFFSET
1,2
COMMENTS
See A191113.
LINKS
MATHEMATICA
h = 3; i = -2; j = 4; k = 0; f = 1; g = 9;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191115 *)
b = (a + 2)/3; c = a/4; r = Range[1, 1500];
d = Intersection[b, r] (* A191113 *)
e = Intersection[c, r] (* A191154 *)
m = a/2 (* divisibility property *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191115 n = a191115_list !! (n-1)
a191115_list = 1 : f (singleton 4)
where f s = m : (f $ insert (3*m-2) $ insert (4*m) s')
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 01 2011
CROSSREFS
Cf. A191113.
Sequence in context: A036063 A112984 A343907 * A073121 A167346 A307274
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2011
STATUS
approved