

A191108


Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x2 and 3x+2 are in a.


2



1, 5, 13, 17, 37, 41, 49, 53, 109, 113, 121, 125, 145, 149, 157, 161, 325, 329, 337, 341, 361, 365, 373, 377, 433, 437, 445, 449, 469, 473, 481, 485, 973, 977, 985, 989, 1009, 1013, 1021, 1025, 1081, 1085, 1093, 1097, 1117, 1121, 1129, 1133, 1297, 1301, 1309, 1313, 1333, 1337, 1345, 1349, 1405, 1409, 1417, 1421, 1441, 1445
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See discussions at A190803, A191106. The sequence a=A191108 has closure properties: the positive integers in (2+A191108)/3 comprise A191108, as do those in (2+A191108)/3.


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000


MATHEMATICA

h = 3; i = 2; j = 3; k = 2; f = 1; g = 7;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191108 *)
b = (a + 2)/3; c = (a  2)/3; r = Range[1, 900];
d = Intersection[b, r] (* A191108 closure property *)
e = Intersection[c, r] (* A191108 closure property *)


CROSSREFS

Cf. A190803, A191106.
Sequence in context: A184851 A211425 A245906 * A216575 A053028 A189411
Adjacent sequences: A191105 A191106 A191107 * A191109 A191110 A191111


KEYWORD

nonn


AUTHOR

Clark Kimberling, May 26 2011


STATUS

approved



