login
Primes p that have Kronecker symbol (p|15) = -1.
4

%I #14 Sep 08 2022 08:45:57

%S 7,11,13,29,37,41,43,59,67,71,73,89,97,101,103,127,131,149,157,163,

%T 179,191,193,223,239,251,269,277,281,283,307,311,313,337,359,367,373,

%U 389,397,401,419,431,433,449,457,461,463,479,487,491,509,521,523,547

%N Primes p that have Kronecker symbol (p|15) = -1.

%C Originally erroneously named "Primes that are not squares mod 15". - _M. F. Hasler_, Jan 18 2016

%C Primes p == {7, 11, 13, 14} (mod 15). See A191018. - _Wolfdieter Lang_, May 24 2021

%H Vincenzo Librandi, <a href="/A191062/b191062.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Prime[Range[200]], JacobiSymbol[#,15]==-1&]

%o (Magma) [p: p in PrimesUpTo(547) | JacobiSymbol(p, 15) eq -1]; // _Vincenzo Librandi_, Sep 11 2012

%Y Cf. A191018.

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 25 2011

%E Definition corrected, following a suggestion from _David Broadhurst_, by _M. F. Hasler_, Jan 18 2016