%I #14 Oct 13 2022 13:57:18
%S 7,11,17,19,23,29,53,67,83,89,97,103,109,137,157,163,167,179,193,197,
%T 211,239,251,263,269,283,307,347,349,353,373,379,383,389,397,401,421,
%U 439,449,461,491,509,541,547,557,569,577,587,607,641,647,661,677,691
%N Primes p that have Kronecker symbol (p|93) = 1.
%C From _Jianing Song_, Oct 13 2022: (Start)
%C Originally erroneously named "Primes that are squares mod 93".
%C Equivalently, primes p such that kronecker(93,p) = 1.
%C Rational primes that decompose in the field Q(sqrt(93)).
%C Primes congruent to 1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 22, 25, 26, 28, 32, 34, 41, 44, 47, 49, 50, 52, 56, 64, 67, 68, 77, 82 modulo 87. (End)
%H Vincenzo Librandi, <a href="/A191055/b191055.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%t Select[Prime[Range[200]], JacobiSymbol[#,93]==1&]
%o (Magma) [p: p in PrimesUpTo(691) | JacobiSymbol(p, 93) eq 1]; // _Vincenzo Librandi_, Sep 10 2012
%o (PARI) isA191055(p) == isprime(p) && kronecker(p, 93) == 1 \\ Jianing Song, Oct 13 2022
%Y A038981, the sequence of primes that do not remain inert in the field Q(sqrt(93)), is essentially the same.
%Y Cf. A038982 (rational primes that remain inert in the field Q(sqrt(93)))..
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 25 2011
%E Definition corrected by _Jianing Song_, Oct 13 2022