login
Primes p that have Kronecker symbol (p|62) = 1.
7

%I #15 Sep 08 2022 08:45:57

%S 3,7,11,13,29,37,41,43,47,53,61,71,83,97,103,113,139,179,181,191,193,

%T 197,229,233,251,257,269,277,281,311,331,347,359,389,431,439,461,479,

%U 491,499,503,509,521,523,557,571,577,587,593,599,607,613,617,619,643

%N Primes p that have Kronecker symbol (p|62) = 1.

%C Originally incorrectly named "primes which are squares (mod 62)", which is sequence A267481. - M. F. Hasler, Jan 15 2016

%H Vincenzo Librandi, <a href="/A191040/b191040.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Prime[Range[200]], JacobiSymbol[#,62]==1&]

%o (Magma) [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 62) eq 1]; // _Vincenzo Librandi_, Sep 11 2012

%o (PARI) select(p->kronecker(p, 62)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191040") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - _M. F. Hasler_, Jan 15 2016

%Y Cf. A191017, A191018, A191020, A191023, A191025, A191026, A191028, A191029, A191032, A191034, A191036, A191037.

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 25 2011

%E Definition corrected (following an observation by _David Broadhurst_) by _M. F. Hasler_, Jan 15 2016