This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191016 Number of projective reflection products on a set with n elements. 0
1, 1, 2, 8, 38, 238, 1558, 10966, 106334, 1050974, 10295324, 114643744, 1426970188, 19128627772, 301484330492, 4785515966492, 75490216911932, 1287754035291964, 23735661951947896, 462001846720538656, 9472366452963142856, 202869898263715663016, 4536294970208910412232, 107194755891965843670088, 2634562640821884269137768 (list; graph; refs; listen; history; text; internal format)



A projective reflection product is a product (usually nonassociative) satisfying (1) x*x=x, (2) x*(x*y)=y, and (3) x*(y*z)=(x*y)*(x*z) for all x,y,z.


Table of n, a(n) for n=1..25.


A projective reflection product on a set S is irreducible if S cannot be written as the disjoint union of two nonempty subsets X and Y such that x*y=y and y*x=x for all x in X and y in Y.

Define i(0)=0 and let i(p) for p>1 be the number of irreducible projective reflection products on a set with p elements. Define c(p,1)=i(p) and recursively define c(p,q)=sum(k=0 to p) of binomial(p,k)*i(k)*c(p-k,q-1). Then a(n)=sum(k=1 to n) of c(n,k)/k!.

This is a sequence of binomial type, also equal to the sum over all partitions of the set of the product of the numbers of irreducible products on the subsets in the partition.


For n=1, the a(1)=1 product is simply x*x=x. For n=2, the a(2)=1 product on {x,y} is (x*x=x, y*y=y, x*y=y, y*x=x). For n=3, the a(3)=2 products are (x*y=y for all x,y) and (x*x=x, y*y=y, z*z=z, x*y=y*x=z, x*z=z*x=y, y*z=z*y=x).


#the number of irreducible projective reflection products

irredprod:=proc(n) local c, v:

    if n=1 then


    elif n=0 or n=2 then






    if n=36 then #E6


    elif n=120 then #E8


    elif n=63 then #E7


    elif n=24 then #F4


    elif n=15 then #H3


    elif n=60 then #H4


    elif n=12 then #D4



    if n>4 and type(sqrt(n), 'integer') then #type B


    elif n>3 and type(1/2+1/2*sqrt(1+8*n), 'integer') then #type A


    elif n>12 and type(1/2+1/2*sqrt(1+4*n), 'integer') then #type D






#convolve the sequences

convol:=proc(n, k) local i: option remember:

    if k=1 then



    add(binomial(n, i)*irredprod(i)*convol(n-i, k-1), i=0..n):


#add the convolutions

numprods:=proc(n) local k:

    add(convol(n, k)/k!, k=1..n):


seq(numprods(n), n=1..30);


The sequence A191015 gives the number of isomorphism classes of such products.

Sequence in context: A269509 A307725 A308205 * A293839 A265906 A060389

Adjacent sequences:  A191013 A191014 A191015 * A191017 A191018 A191019




Matthew J. Samuel, May 24 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)