

A190959


a(n) = 3*a(n1)  5*a(n2), with a(0)=0, a(1)=1.


1



0, 1, 3, 4, 3, 29, 72, 71, 147, 796, 1653, 979, 5328, 20879, 35997, 3596, 169197, 525571, 730728, 435671, 4960653, 12703604, 13307547, 23595379, 137323872, 293994721, 195364803, 883879196, 3628461603, 6465988829, 1255658472, 28562968729
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This is the Lucas U(P=3,Q=5) sequence.  R. J. Mathar, Oct 24 2012


LINKS

Table of n, a(n) for n=0..31.
Wikipedia, Lucas sequence


FORMULA

a(n)=(1/11*I)*sqrt(11)*((3/2(1/2*I)*sqrt(11))^n(3/2+(1/2*I)*sqrt(11))^n).  Paolo P. Lava, Jun 01 2011
G.f.: x/(13x+5*x^2).  Philippe Deléham, Oct 11 2011


MATHEMATICA

LinearRecurrence[{3, 5}, {0, 1}, 50]


CROSSREFS

Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A051508 A172990 A084252 * A038018 A108658 A240669
Adjacent sequences: A190956 A190957 A190958 * A190960 A190961 A190962


KEYWORD

sign,easy


AUTHOR

Vladimir Joseph Stephan Orlovsky, May 24 2011


STATUS

approved



