OFFSET
1,1
COMMENTS
The count of primes of the interval(R_n,R_(n+1)] where R_n is A104272(n).
The sequence A182873 is the first difference of Ramanujan primes R_(n+1)- R_n. While each non-Ramanujan prime is bound by Ramanujan primes, the maximal non-Ramanujan prime gap is less than the maximal Ramanujan prime gap, A182873, and the ratio of a(n)/A182873(n) is the average gap size at R_n.
Record terms of n, a(n) are in A202186, A202187. Each record term value of a(n) - 1 is the index m of A168425(m). A202188 is the index of A168425 when A174641(n) = A168425(m), it has repeated values of A202187.
Starting at index n = A191228(A174602(m)) in this sequence, the first instance of a count of m - 1 consecutive 1's is seen.
Limit inferior of a(n) is positive, because there are infinitely many Ramanujan primes and each term of the sequence is >= 1.
Limit superior of a(n)/log(pi(R_n)) is positive infinity. Equivalently, there are infinitely many n > 0 such that pi(R_(n+1)) > pi(R_n) + t log(pi(R_n)), for every t > 0.
For all n > 3, a(n) < n.
a(n) = rho(n+1) - rho(n) using rho(x) as defined in Sondow, Nicholson, Noe.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
FORMULA
EXAMPLE
R(4) = 29, the fourth Ramanujan prime, the next Ramanujan prime is a(4) = 3 primes away or R(5) = 41.
MATHEMATICA
nn = 100;
R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, R[[s+1]] = k], {k, Prime[3 nn]}];
R = R + 1;
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Nicholson, May 22 2011
STATUS
approved