login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190866 Let E(n) be the average number of steps required for the addition of two binary numbers of length n; sequence gives a(n) = 2^(2n-1)*E(n). 1
1, 8, 46, 234, 1110, 5050, 22334, 96874, 414238, 1752634, 7355118, 30670346, 127243678, 525730394, 2164795918, 8888836906, 36411649918, 148852878458, 607462498670, 2475300829258, 10073160450270, 40945074731674, 166262166593486, 674512144772970, 2734211624758846, 11075312596363962, 44832399690121262, 181370501947392138, 733336266094313886, 2963615247763178714 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The addition is carried out by a parallel adder as described by J. von Neumann. Pippenger describes E(n) as the expected number of times that a "carry-save" adder must be used to clear all carries.

LINKS

Table of n, a(n) for n=1..30.

Volker Claus, Die mittlere Additionsdauer eines Paralleladdierwerks, Acta Informat. 2 (1973), 283-291.

D. E. Knuth, The average time for carry propagation, Nederl. Akad. Wetensch. Indag. Math., 81 (2) (1978), 238-242.

Nicholas Pippenger, Analysis of carry propagation in addition: an elementary approach, J. Algorithms 42 (2002), 317-333.

FORMULA

The formulas used in the Maple program are due to Claus. Knuth gives an asymptotic expansion for E(n).

EXAMPLE

Values of E(n), n>=1: 1/2, 1, 23/16, 117/64, 555/256, 2525/1024, 11167/4096, 48437/16384, ...

MAPLE

q := proc(n, i)

        option remember ;

        if i > n then

                0 ;

        elif i = 0 then

                1;

        elif i = 1 then

                if n >= 2 then

                        (procname(n-1, 1)+1)/2 ;

                else

                        1/2 ;

                end if;

        elif i >=2 then

                procname(n-1, i)+(1-procname(n-i+1, i))/2^i ;

        end if;

end proc:

E := proc(n)

        add( q(n, i), i=1..n) ;

end proc:

[seq(2^(2*n-1)*E(n), n=1..30)];

CROSSREFS

See A190868 for a closely related sequence.

Sequence in context: A182542 A026843 A026874 * A026867 A026885 A052244

Adjacent sequences:  A190863 A190864 A190865 * A190867 A190868 A190869

KEYWORD

nonn,frac

AUTHOR

R. J. Mathar and N. J. A. Sloane, May 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 10:25 EST 2021. Contains 341649 sequences. (Running on oeis4.)