login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190802 Gauss' approximation for the number of primes below 10^n. 10
5, 29, 177, 1245, 9629, 78627, 664917, 5762208, 50849234, 455055614, 4118066400, 37607950280, 346065645809, 3204942065691, 29844571475287, 279238344248556, 2623557165610821, 24739954309690414, 234057667376222381, 2220819602783663483 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The offset logarithmic integral or Eulerian logarithmic integral Li(10^n)-Li(2), i.e., integral(2..x, dt/log(t)), appears in Gauss’ formula for counting prime numbers <10^n and is sometimes referred to as the "European" definition. - Vladimir Pletser, Mar 17 2013

REFERENCES

Jonathan Borwein, David H. Bailey, "Mathematics by Experiment", A. K. Peters, 2004, p. 65 (Table 2.2).

LINKS

Vladimir Pletser, Table of n, a(n) for n = 1..500

Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See Table 1 p. 6.

FORMULA

a(n) = round(integral(dt/log(t),t=2..10^n)).

MAPLE

seq(round(evalf(integrate(1/log(t), t=2..10^n))), n=1..21);

CROSSREFS

Cf. A006880, A106313.

Sequence in context: A163611 A160906 A163073 * A139174 A290117 A153296

Adjacent sequences:  A190799 A190800 A190801 * A190803 A190804 A190805

KEYWORD

nonn

AUTHOR

Nathaniel Johnston, May 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 14:36 EDT 2020. Contains 337291 sequences. (Running on oeis4.)