login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190790 G.f. satisfies: A(x) = 1 + Sum_{n>=1} q^(2n-1)/(1 - q^(2n-1)) where q = x*A(x). 2

%I

%S 1,1,2,6,18,58,198,696,2506,9205,34344,129792,495834,1911640,7428444,

%T 29064650,114404410,452719183,1799994588,7187148262,28807364008,

%U 115865980972,467497031164,1891710323324,7675031497682,31215088847239

%N G.f. satisfies: A(x) = 1 + Sum_{n>=1} q^(2n-1)/(1 - q^(2n-1)) where q = x*A(x).

%F G.f. A(x) satisfies:

%F * A(x) = 1 + Sum_{n>=1} q^(n*(n+1)/2)/(1 - q^n), where q = x*A(x);

%F * A(x) = 1 + Sum_{n>=1} q^n/(1 - q^(2n)), where q = x*A(x);

%F * A(x) = 1 + Sum_{n>=1} A001227(n)*x^n*A(x)^n, where A001227(n) = number of odd divisors of n.

%F Let D(x) = 1 + Sum_{n>=1} A001227(n)*x^n, then

%F * A(x) = D(x*A(x)) and D(x) = A(x/D(x));

%F * A(x) = (1/x)*Series_Reversion(x/D(x));

%F * a(n) = [x^n] D(x)^(n+1)/(n+1), the coefficient of x^n in D(x)^(n+1)/(n+1) for n>=0.

%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 58*x^5 + 198*x^6 +...

%e Let q = x*A(x), then the g.f. A(x) satisfies the following series:

%e * A(x) = 1 + q/(1 - q) + q^3/(1 - q^3) + q^5/(1 - q^5) + q^7/(1 - q^7) +...

%e * A(x) = 1 + q/(1 - q) + q^3/(1 - q^2) + q^6/(1 - q^3) + q^10/(1 - q^4) +...

%e * A(x) = 1 + q/(1 - q^2) + q^2/(1 - q^4) + q^3/(1 - q^6) + q^4/(1 - q^8) +...

%e * A(x) = 1 + q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 +...+ A001227(n)*q^n +...

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(2*m-1)/(1-(x*A)^(2*m-1)+x*O(x^n))));polcoeff(A,n)}

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(m*(m+1)/2)/(1-(x*A)^m+x*O(x^n))));polcoeff(A,n)}

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^m/(1-(x*A)^(2*m)+x*O(x^n))));polcoeff(A,n)}

%o (PARI) {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(1/x*serreverse(x/D),n)}

%o (PARI) {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(D^(n+1)/(n+1),n)}

%K nonn

%O 0,3

%A _Paul D. Hanna_, May 20 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 08:08 EDT 2020. Contains 335520 sequences. (Running on oeis4.)