login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190781 Lucas Aurifeuillian primitive part B of Lucas(10*n - 5). 2
11, 31, 151, 911, 541, 3641, 272611, 18451, 12760031, 7947701, 767131, 4106261531, 28144128251, 34379101, 120196353941, 823837075741, 51164521, 4215154433351, 2918000731816531, 73998076231, 12462174208709101, 939587136717207031, 3467131047901 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 1..250

John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), pp. 251-260, S1.

C. K. Caldwell, "Top Twenty" page, Lucas Aurifeuillian primitive part

FORMULA

a(n) = GCD(A061447(10*n-5), A032908(n)*A106729(n-1) + 1).

MATHEMATICA

lst = {1}; n = 23; Do[f = LucasL[k]; Do[f = f/GCD[f, lst[[d]]], {d, Most@Divisors[k]}]; AppendTo[lst, f], {k, 2, 10*n - 5}]; Table[GCD[lst[[5*k]], 5*Fibonacci[k]*(Fibonacci[k] + 1) + 1], {k, 1, 2*n - 1, 2}]

CROSSREFS

Cf. A061447, A190757.

Sequence in context: A181150 A094622 A193645 * A001604 A144727 A002535

Adjacent sequences:  A190778 A190779 A190780 * A190782 A190783 A190784

KEYWORD

nonn

AUTHOR

Arkadiusz Wesolowski, Dec 29 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:27 EST 2019. Contains 329836 sequences. (Running on oeis4.)