login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190710 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,3) and [ ]=floor. 6
3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.

Examples:

(golden ratio,2,1):  A190427-A190430

(sqrt(2),2,0):  A190480-A190482

(sqrt(2),2,1):  A190483-A190486

(sqrt(2),3,0):  A190487-A190490

(sqrt(2),3,1):  A190491-A190495

(sqrt(2),3,2):  A190496-A190500

(sqrt(2),4,c):  A190544-A190566

LINKS

Table of n, a(n) for n=1..132.

MATHEMATICA

r = Sqrt[3]; b = 4; c = 3;

f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];

t = Table[f[n], {n, 1, 200}] (* A190710 *)

Flatten[Position[t, 0]]      (* A190711 *)

Flatten[Position[t, 1]]      (* A190712 *)

Flatten[Position[t, 2]]      (* A190713 *)

Flatten[Position[t, 3]]      (* A190714 *)

Flatten[Position[t, 4]]      (* A190715 *)

CROSSREFS

Cf. A190711-A190715.

Sequence in context: A085080 A260308 A079714 * A114907 A278499 A231132

Adjacent sequences:  A190707 A190708 A190709 * A190711 A190712 A190713

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:22 EST 2016. Contains 278682 sequences.