login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190710 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,3) and [ ]=floor. 6
3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 2, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 4, 3, 1, 0, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.

Examples:

(golden ratio,2,1):  A190427-A190430

(sqrt(2),2,0):  A190480-A190482

(sqrt(2),2,1):  A190483-A190486

(sqrt(2),3,0):  A190487-A190490

(sqrt(2),3,1):  A190491-A190495

(sqrt(2),3,2):  A190496-A190500

(sqrt(2),4,c):  A190544-A190566

LINKS

Table of n, a(n) for n=1..132.

MATHEMATICA

r = Sqrt[3]; b = 4; c = 3;

f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];

t = Table[f[n], {n, 1, 200}] (* A190710 *)

Flatten[Position[t, 0]]      (* A190711 *)

Flatten[Position[t, 1]]      (* A190712 *)

Flatten[Position[t, 2]]      (* A190713 *)

Flatten[Position[t, 3]]      (* A190714 *)

Flatten[Position[t, 4]]      (* A190715 *)

CROSSREFS

Cf. A190711-A190715.

Sequence in context: A085080 A260308 A079714 * A114907 A231132 A131732

Adjacent sequences:  A190707 A190708 A190709 * A190711 A190712 A190713

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 03:16 EDT 2015. Contains 261112 sequences.