This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190705 6*n^2*(2*n+1). 1

%I

%S 0,18,120,378,864,1650,2808,4410,6528,9234,12600,16698,21600,27378,

%T 34104,41850,50688,60690,71928,84474,98400,113778,130680,149178,

%U 169344,191250,214968,240570,268128,297714,329400

%N 6*n^2*(2*n+1).

%C Number of partitions of 12*n+1 into 4 parts.

%H Vincenzo Librandi, <a href="/A190705/b190705.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 6 * A099721(n).

%F a(0)=0, a(1)=18, a(2)=120, a(3)=378, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - _Harvey P. Dale_, Mar 20 2016

%e a(1)=18: there are 18 partitions of 12*1+1=13 into 4 parts:

%e [1,1,1,10], [1,1,2,9], [1,1,3,8], [1,1,4,7], [1,1,5,6], [1,2,2,8], [1,2,3,7],[1,2,4,6], 1,2,5,5], [1,3,3,6], [1,3,4,5], [1,4,4,4], [2,2,2,7], [2,2,3,6], [2,2,4,5], [2,3,3,5], [2,3,4,4], [3,3,3,4].

%t Table[6n^2(2n + 1), {n, 0, 30}]

%t LinearRecurrence[{4,-6,4,-1},{0,18,120,378},40] (* _Harvey P. Dale_, Mar 20 2016 *)

%o (MAGMA) [6*n^2*(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 14 2011

%o (PARI) a(n)=6*n^2*(2*n+1) \\ _Charles R Greathouse IV_, Aug 05 2013

%K nonn,easy

%O 0,2

%A _Adi Dani_, Jun 14 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.