This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190669 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(sqrt(3),2,0) and [ ] = floor. 4
 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Write a(n) = [(b*n+c)*r] - b*[n*r] - [c*r]. If r>0 and b and c are integers satisfying b >= 2 and 0 <= c <= b-1, then 0 <= a(n) <= b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers. Examples: (golden ratio,2,1):  A190427-A190430 (sqrt(2),2,0):  A197879, A120243, A120749 (sqrt(2),2,1):  A190483-A190486 (sqrt(2),3,0):  A190487-A190490 (sqrt(2),3,1):  A190491-A190495 (sqrt(2),3,2):  A190496-A190500 (sqrt(2),4,c):  A190544-A190566 (sqrt(3),2,0):  A190669-A190671 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = floor(2*n*sqrt(3)) - 2*floor(n*sqrt(3)). MATHEMATICA r = Sqrt[3]; b = 2; c = 0; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 200}] (* A190669 *) Flatten[Position[t, 0]]      (* A190670 *) Flatten[Position[t, 1]]      (* A190671 *) PROG (PARI) for(n=1, 100, print1(floor(2*n*sqrt(3)) - 2*floor(n*sqrt(3)), ", ")) \\ G. C. Greubel, Apr 20 2018 (MAGMA) [Floor(2*n*Sqrt(3)) - 2*Floor(n*Sqrt(3)): n in [1..100]]; // G. C. Greubel, Apr 20 2018 CROSSREFS Cf. A190670, A190671. Sequence in context: A071004 A188083 A102560 * A285258 A068428 A078650 Adjacent sequences:  A190666 A190667 A190668 * A190670 A190671 A190672 KEYWORD nonn,changed AUTHOR Clark Kimberling, May 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 09:08 EDT 2019. Contains 327093 sequences. (Running on oeis4.)