

A190591


The coefficient of t^n in the power series solution of u in the equation t+(1t+t^2+t^3)*u(t+t^4)*u^2+(t^3+t^5)*u^3t^4*u^4=0.


1



0, 1, 1, 1, 1, 2, 4, 7, 12, 23, 47, 96, 195, 402, 843, 1781, 3772, 8020, 17143, 36810, 79304, 171368, 371450, 807516, 1760145, 3845770, 8421528, 18480552, 40634154, 89507024, 197496651, 436469232, 966043263, 2141158866, 4751978668
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


REFERENCES

S. Gao, H. Niederhausen, Sequences Arising From Prudent SelfAvoiding Walks, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory).


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..750


MAPLE

s:= solve(t+(1t+t^2+t^3)*u(t+t^4)*u^2+(t^3+t^5)*u^3t^4*u^4, u):
a:= n> coeff(series(s, t, n+1), t, n):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 03 2011


CROSSREFS

Sequence in context: A226160 A018181 A141017 * A027945 A079800 A217595
Adjacent sequences: A190588 A190589 A190590 * A190592 A190593 A190594


KEYWORD

nonn


AUTHOR

This sequence was derived by Dr. Aaron Meyerowitz and submitted by Shanzhen Gao, May 13 2011


STATUS

approved



