This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190585 E.g.f. prod(n>=1, (1-x^n)^(-u(n)/n) where u(n) is the unitary Moebius function (A076479). 4
 1, 1, 1, 1, -5, -29, -89, -209, -9239, -120455, -801359, -3674879, 15450931, 505760971, 4925214295, 30957618511, -3280733667119, -49063880680079, -327527326905119, -1087577476736255, 97366167074820331, 1723137650565888691, 13360549076712501511 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The corresponding sequence for the (usual) Moebius function is the constant sequence a(n)=1 (A000012). Log(e.g.f.) = x -1/4*x^4 -1/4*x^8 -1/9*x^9 -3/16*x^16 -1/25*x^25 -2/27*x^27 -1/8*x^32 +1/36*x^36 -1/49*x^49 -5/64*x^64 +- ...; the corresponding function for the usual Moebius function is log(exp(x)) = x. Log(g.f.) = x +1/2*x^2 +1/3*x^3 -23/4*x^4 -119/5*x^5 -359/6*x^6 -839/7*x^7 +-...; the corresponding function for the usual Moebius function if sum(n>=1, h(n)*x^n) where h(n)=sum(k=1..n, 1/k) is a harmonic number. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..65 PROG (PARI) N=66;  /* that many terms */ /* First compute the unitary Moebius function */ mu=vector(N); mu[1]=1; { for (n=2, N,     s = 0;     fordiv (n, d,         if (gcd(d, n/d)!=1, next() ); /* unitary divisors only */         s += mu[d];     );     mu[n] = -s; ); }; egf=prod(n=1, N, (1-x^n)^(-mu[n]/n)); /* = 1 +x +1/2*x^2 +1/6*x^3 -5/24*x^4 +-... */ Vec(serlaplace(egf)) /* show terms */ CROSSREFS Cf. A076479. Sequence in context: A111937 A215850 A308396 * A197276 A211062 A264750 Adjacent sequences:  A190582 A190583 A190584 * A190586 A190587 A190588 KEYWORD sign AUTHOR Joerg Arndt, May 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)