%I #13 Feb 19 2019 03:55:49
%S 4827859,5413813,59069473,59069489,171426679,189784123,191766193,
%T 196232137,306928507,359727833,367733497,409634959,452273897,
%U 508068287,644033227,665209213,737454929,879260659,889580717,924491669
%N The smallest prime(j) in a sequence of 7 consecutive primes such that the associated 2*prime(k)+3, k=j..j+6, are also prime.
%C Concerning the even more stringent case of 8 consecutive primes: 59069473 is the least prime(j) of 8 consecutives primes prime(k) such that 2*prime(k)+3 are primes for k=j to j+7 and 3203934593 is the next prime with the same property.
%e 4827859, 4827863, ..., 4827943 are seven consecutive primes, and the associated seven 9655721, 9655729, ..., 9655889 are also prime numbers. This puts 4827859 into the sequence.
%p isA023204 := proc(n) isprime(n) and isprime(2*n+3) ; end proc:
%p isA190583 := proc(n) local q,s ; q := n ; if isA023204(q) then for s from 1 to 6 do q := nextprime(q) ; if not isA023204(q) then return false; end if; end do; return true; else return false; end if; end proc:
%p p := 2 : for i from 1 do if isA190583(p) then print(p) ; end if; p := nextprime(p) ; end do: # _R. J. Mathar_, Jun 02 2011
%Y Cf. A190478.
%K nonn
%O 1,1
%A _Pierre CAMI_, May 13 2011