|
|
A190568
|
|
Number of squares between powers of 2, floor(sqrt(2^(n+1))) - floor(sqrt(2^n))
|
|
2
|
|
|
1, 0, 1, 0, 2, 1, 3, 3, 5, 6, 10, 13, 19, 26, 38, 53, 75, 106, 150, 212, 300, 424, 600, 848, 1200, 1696, 2400, 3393, 4799, 6786, 9598, 13572, 19196, 27145, 38391, 54291, 76781, 108583, 153561, 217167, 307121, 434334, 614242, 868668, 1228484, 1737337, 2456967, 3474675, 4913933
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,5
|
|
COMMENTS
|
A190568(n)/A190568(n-1) converges to sqrt(2) (A002193). - John W. Nicholson, May 15 2011
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = -1..6646
|
|
FORMULA
|
a(n) = floor(sqrt(2^(n+1))) - floor(sqrt(2^n)).
|
|
EXAMPLE
|
Between 2^6=64 and 2^(6+1)=128 are the squares 81=9^2, 100=10^2, 121=11^2, so a(n)=3
|
|
MATHEMATICA
|
Table[Floor[Sqrt[2^(n + 1)]] - Floor[Sqrt[2^n]], {n, -1, 120}] (* G. C. Greubel, Aug 19 2018 *)
|
|
PROG
|
(PARI) a(n)=sqrtint(1<<(n+1))-sqrtint(1<<n) \\ Charles R Greathouse IV, May 12, 2011
(MAGMA) [Floor(Sqrt(2^(n+1))) - Floor(Sqrt(2^n)): n in [-1..50]]; // G. C. Greubel, Aug 19 2018
|
|
CROSSREFS
|
Cf. A000079, A000290
Sequence in context: A173510 A238785 A241389 * A059876 A095354 A132883
Adjacent sequences: A190565 A190566 A190567 * A190569 A190570 A190571
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
John W. Nicholson, May 12 2011
|
|
EXTENSIONS
|
Definition corrected by Bruno Berselli, May 13 2011
|
|
STATUS
|
approved
|
|
|
|