This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190567 Continued fraction expansion of 46*sqrt(46). 2
 311, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 G. Xiao, Contfrac. Index entries for linear recurrences with constant coefficients, signature (0,0,0,1). FORMULA G.f.:  (311+x+76*x^2+x^3+311*x^4)/(1-x^4). a(n) = 1+3*(1+(-1)^n)*(116+91*i^n)/2 with n>0, i=sqrt(-1) and a(0)=311. a(n) = (-1513*(n mod 4)+575*((n+1) mod 4)+125*((n+2) mod 4)+2213*((n+3) mod 4))/12  for n>0. a(n) = a(n-4), n>=5. - Vincenzo Librandi, Jun 14 2013 MATHEMATICA ContinuedFraction[46 Sqrt[46], 80] (* or *) PadRight[{311}, 80, {622, 1, 76, 1}] CoefficientList[Series[(311 + x + 76 x^2 + x^3 + 311 x^4) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 14 2013 *) PROG (MAGMA)  [311] cat &cat[ [1, 76, 1, 622]: n in [1..18] ]; (PARI) a(n)=if(n, [622, 1, 76, 1][n%4+1], 311) \\ Charles R Greathouse IV, May 13, 2011 (MAGMA) I:=[311, 1, 76, 1, 622]; [n le 5 select I[n] else Self(n-4): n in [1..80]]; // Vincenzo Librandi, Jun 14 2013 CROSSREFS Cf. A010136; A040005, A040021, A010186, A040201, A040324, A040489, A040968. Sequence in context: A289304 A281568 A084876 * A060339 A046016 A142005 Adjacent sequences:  A190564 A190565 A190566 * A190568 A190569 A190570 KEYWORD nonn,cofr,easy AUTHOR Bruno Berselli, May 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 06:34 EST 2019. Contains 329784 sequences. (Running on oeis4.)