OFFSET
1,2
COMMENTS
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
MATHEMATICA
r = Sqrt[2]; b = 4; c = 3;
f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
t = Table[f[n], {n, 1, 200}] (* A190561 *)
Flatten[Position[t, 0]] (* A190562 *)
Flatten[Position[t, 1]] (* A190563 *)
Flatten[Position[t, 2]] (* A190564 *)
Flatten[Position[t, 3]] (* A190565 *)
Flatten[Position[t, 4]] (* A190566 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 12 2011
STATUS
approved