login
A190535
Number of (n+2) X (n+2) symmetric binary matrices without the pattern 0 1 1 diagonally.
2
56, 672, 13440, 443520, 23950080, 2107607040, 301387806720, 69921971159040, 26290661155799040, 16011012643881615360, 15786858466867272744960, 25195826113120167300956160, 65080818850189392138369761280
OFFSET
1,1
COMMENTS
From John M. Campbell, May 25 2011: (Start)
a(n) equals the determinant of the (n+4) X (n+4) "Fibonacci matrix" whose (i,j)-entry is equal to F_{i+1} if i=j and is equal to 1 otherwise. For example, a(2)=672 equals the determinant of the 6 X 6 Fibonacci matrix
{{1,1,1,1,1,1},
{1,2,1,1,1,1},
{1,1,3,1,1,1},
{1,1,1,5,1,1},
{1,1,1,1,8,1},
{1,1,1,1,1,13}}. (End)
LINKS
EXAMPLE
Some solutions for 4 X 4:
..0..1..0..1....1..1..1..1....0..1..1..0....0..1..1..1....1..1..1..1
..1..0..0..0....1..0..0..0....1..1..1..0....1..1..0..1....1..0..0..1
..0..0..0..0....1..0..0..0....1..1..0..1....1..0..0..1....1..0..0..0
..1..0..0..0....1..0..0..1....0..0..1..1....1..1..1..0....1..1..0..0
MATHEMATICA
Table[Det[Array[KroneckerDelta[#1, #2](Fibonacci[#1+1]-1)+1&, {n, n}]], {n, 5, 20}] (* John M. Campbell, May 25 2011 *)
PROG
(PARI) a(n) = matdet(matrix(n+4, n+4, i, j, if (i==j, fibonacci(i+1), 1))); \\ Michel Marcus, Jan 03 2016
CROSSREFS
Sequence in context: A264212 A027813 A199914 * A190604 A136006 A138410
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 12 2011
STATUS
approved