%I #10 Feb 14 2025 05:09:19
%S 6,14,21,29,38,45,52,59,68,76,83,91,100,106,114,121,130,138,145,153,
%T 159,168,176,183,191,200,207,214,221,230,238,245,253,262,268,276,283,
%U 291,300,307,315,321,330,338,345,353,362,368,376,383,392,400,407,415,421,430,438,445,453,462,469,476,483,492,500,507,515,524,530
%N a(n) = n+[n*s/r]+[n*t/r]+[n*u/r]; r=golden ratio, s=r+1, t=r+2, u=r+3.
%C This is one of four sequences that partition the positive integers. In general, suppose that r, s, t, u are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1}, {h/u: h>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the four sets are jointly ranked. Define b(n), c(n), d(n) as the ranks of n/s, n/t, n/u, respectively.
%C It is easy to prove that
%C a(n)=n+[n*s/r]+[n*t/r]+[n*u/r],
%C b(n)=n+[n*r/s]+[n*t/s]+[n*u/s],
%C c(n)=n+[n*r/t]+[n*s/t]+[n*u/t],
%C d(n)=n+[n*r/u]+[n*s/u]+[n*t/u], where []=floor.
%C Taking r=golden ratio, s=r+1, t=r+2, u=r+3 gives a=A190504, b=A190505, c=A190506, d=A190507.
%t r=GoldenRatio; s=r+1; t=r+2; u=r+3;
%t a[n_] := n + Floor[n*s/r] + Floor[n*t/r]+Floor[n*u/r];
%t b[n_] := n + Floor[n*r/s] + Floor[n*t/s]+Floor[n*u/s];
%t c[n_] := n + Floor[n*r/t] + Floor[n*s/t]+Floor[n*u/t];
%t d[n_] := n + Floor[n*r/u] + Floor[n*s/u]+Floor[n*t/u];
%t Table[a[n], {n, 1, 120}] (*A190504*)
%t Table[b[n], {n, 1, 120}] (*A190505*)
%t Table[c[n], {n, 1, 120}] (*A190506*)
%t Table[d[n], {n, 1, 120}] (*A190507*)
%Y Cf. A190505, A190506, A190507 (the other three sequences in the partition of N).
%K nonn,changed
%O 1,1
%A _Clark Kimberling_, May 11 2011