login
A190471
Numbers with prime factorization p^2*q^4*r^4 where p, q, and r are distinct primes.
3
32400, 63504, 90000, 156816, 202500, 219024, 345744, 374544, 467856, 490000, 685584, 777924, 960400, 1089936, 1210000, 1245456, 1690000, 1774224, 2108304, 2178576, 2396304, 2480625, 2862864, 2890000, 3610000, 3640464, 4112784, 4511376
OFFSET
1,1
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(4)^2/2 - P(2)*P(8)/2 - P(4)*P(6) + P(10) = 0.00010139253539568059065..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 4, 4}; Select[Range[3500000], f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^2*Prime[n]^4*Prime[m]^4]], {n, 33}, {m, 33}, {k, 33}]; Take[Union@lst, 60]
PROG
(PARI) list(lim)=my(v=List(), t1, t2); forprime(p=2, (lim\4)^(1/8), t1=p^4; forprime(q=p+1, (lim\t1)^(1/4), t2=t1*q^4; forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next); listput(v, t2*r^2)))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved