This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190452 E.g.f. exp(x+x^2/2+x^4/24). 2
 1, 1, 2, 4, 11, 31, 106, 372, 1499, 6211, 28606, 135356, 697357, 3688049, 20935006, 121837276, 753159801, 4767863657, 31807384354, 217048147396, 1551200297291, 11327527814191, 86206555248122, 669666314150164, 5399592811359331, 44398500646885851 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..600 FORMULA E.g.f.: exp(x+x^2/2+x^4/24). a(n) = n!*sum(k=1..n, sum(j=floor((4*k-n)/3)..floor((4*k-n)/2), binomial(j,n-4*k+3*j)*12^(j-k)*binomial(k,j)*2^(-n+3*k-2*j))/k!), n>0, a(0)=1. Recurrence: 6*a(n) = 6*a(n-1) + 6*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Oct 09 2013 a(n) ~ 1/2*exp((6*n)^(1/4) + sqrt(6*n)/2 - 3*n/4 - 3/4) * n^(3*n/4) * 6^(-n/4) * (1 + 3^(5/4)/(16*(2*n)^(3/4)) + 7*sqrt(3/2)/(8*sqrt(n)) - 3^(3/4)/(2*(2*n)^(1/4))). - Vaclav Kotesovec, Oct 09 2013 MATHEMATICA With[{nn=30}, CoefficientList[Series[Exp[x+x^2/2+x^4/24], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jun 21 2012 *) PROG (Maxima) a(n):=n!*sum(sum(binomial(j, n-4*k+3*j)*12^(j-k)*binomial(k, j)*2^(-n+3*k-2*j), j, floor((4*k-n)/3), floor((4*k-n)/2))/k!, k, 1, n); (PARI) N=33;  x='x+O('x^N); egf=exp(x+x^2/2+x^4/4!); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */ CROSSREFS Column k=4 of A275422. Sequence in context: A004251 A148169 A110140 * A275426 A115625 A056323 Adjacent sequences:  A190449 A190450 A190451 * A190453 A190454 A190455 KEYWORD nonn AUTHOR Vladimir Kruchinin, May 24 2011 EXTENSIONS More terms from Harvey P. Dale, Jun 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 15:08 EDT 2019. Contains 327198 sequences. (Running on oeis4.)