login
A190441
a(n) = 4*a(n-1) + 39*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 4, 55, 376, 3649, 29260, 259351, 2178544, 18828865, 160278676, 1375440439, 11752630120, 100652697601, 860963365084, 7369308666775, 63054805905376, 539622261625729, 4617626476812580, 39515774110653751, 338150529038305624, 2893717306468718785
OFFSET
0,3
FORMULA
G.f.: x/(1-4*x-39*x^2).
a(n) = ((2+sqrt(43))^n - (2-sqrt(43))^n)/(2*sqrt(43)).
MATHEMATICA
a = {0, 1}; Do[AppendTo[a, 4 a[[-1]] + 39 a[[-2]]], {20}]; a (* Bruno Berselli, Dec 26 2012 *)
CoefficientList[Series[x / (1 - 4 x - 39 x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{4, 39}, {0, 1}, 30] (* Harvey P. Dale, Aug 21 2021 *)
PROG
(Maxima) a[0]:0$ a[1]:1$ a[n]:=4*a[n-1]+39*a[n-2]$ makelist(a[n], n, 0, 17);
(Magma) [n le 2 select n-1 else 4*Self(n-1)+39*Self(n-2): n in [1..22]];
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-39*x^2))) \\ G. C. Greubel, Dec 30 2017
CROSSREFS
Cf. A015611, A190943 (with similar closed forms).
Sequence in context: A064439 A352510 A133218 * A151576 A204107 A285366
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 25 2011
STATUS
approved