This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor. 7

%I

%S 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,

%T 2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,

%U 2,1,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,3,1,0,2,0,3,1,0,2,1,3,2,0,3,1,0,2,1,3,2,0,2,1,3,2,0

%N [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor.

%C Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.

%C Examples:

%C (golden ratio,2,0): A078588, A005653, A005652

%C (golden ratio,2,1): A190427-A190430

%C (golden ratio,3,0): A140397-A190400

%C (golden ratio,3,1): A140431-A190435

%C (golden ratio,3,2): A140436-A190439

%F a(n)=[4nr]-4[nr], where r=golden ratio.

%t r = GoldenRatio;

%t f[n_] := Floor[4*n*r] - 4*Floor[n*r];

%t t = Table[f[n], {n, 1, 320}] (* A190440 *)

%t Flatten[Position[t, 0]] (* A190240 *)

%t Flatten[Position[t, 1]] (* A190249 *)

%t Flatten[Position[t, 2]] (* A190442 *)

%t Flatten[Position[t, 3]] (* A190443 *)

%t Flatten[Position[t, 4]] (* A190248 *)

%Y Cf. A190889, A190442, A190443, A190251.

%K nonn

%O 1,1

%A _Clark Kimberling_, May 10 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 10:10 EDT 2019. Contains 327229 sequences. (Running on oeis4.)