login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor. 7
2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Write a(n)=[(bn+c)r]-b[nr]-[cr].  If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b.  The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b.  These b+1 position sequences comprise a partition of the positive integers.

Examples:

(golden ratio,2,0):  A078588, A005653, A005652

(golden ratio,2,1):  A190427-A190430

(golden ratio,3,0):  A140397-A190400

(golden ratio,3,1):  A140431-A190435

(golden ratio,3,2):  A140436-A190439

LINKS

Table of n, a(n) for n=1..112.

FORMULA

a(n)=[4nr]-4[nr], where r=golden ratio.

MATHEMATICA

r = GoldenRatio;

f[n_] := Floor[4*n*r] - 4*Floor[n*r];

t = Table[f[n], {n, 1, 320}] (* A190440 *)

Flatten[Position[t, 0]]  (* A190240 *)

Flatten[Position[t, 1]]  (* A190249 *)

Flatten[Position[t, 2]]  (* A190442 *)

Flatten[Position[t, 3]]  (* A190443 *)

Flatten[Position[t, 4]]  (* A190248 *)

CROSSREFS

Cf. A190889, A190442, A190443, A190251.

Sequence in context: A158853 A238762 A269517 * A054372 A070679 A177443

Adjacent sequences:  A190437 A190438 A190439 * A190441 A190442 A190443

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:10 EDT 2019. Contains 326109 sequences. (Running on oeis4.)