login
A190415
Decimal expansion of sum over lower triangular subarray of array G defined at A190404.
3
1, 4, 3, 6, 4, 9, 6, 0, 4, 3, 9, 0, 2, 2, 0, 4, 2, 6, 0, 1, 8, 5, 3, 8, 1, 7, 6, 0, 0, 8, 5, 7, 5, 4, 5, 5, 1, 0, 0, 7, 0, 6, 0, 0, 0, 2, 8, 5, 6, 2, 0, 2, 4, 6, 7, 3, 7, 2, 4, 7, 8, 9, 5, 9, 6, 2, 7, 6, 5, 9, 2, 9, 8, 1, 4, 9, 7, 0, 4, 2, 2, 7, 7, 1, 2, 6, 9, 5, 6, 2, 8, 1, 8, 9, 0, 4, 3, 8, 8, 1, 1, 2, 8, 0, 7, 2, 6, 7, 8, 7, 0, 8
OFFSET
0,2
COMMENTS
See A190404.
LINKS
EXAMPLE
0.14364960439022042601853817600857545510070600028562...
MATHEMATICA
f[i_, j_] := i + (j + i - 2)(j + i - 1)/2; (* natural number array, A000027 *)
g[i_, j_] := (1/2)^f[i, j];
d[h_] := Sum[g[i, i+h-1], {i, 1, 250}]; (* h-th up-diag sum *)
e[h_] := Sum[g[i+h, i], {i, 1, 250}]; (* h-th low-diag sum *)
c1 = N[Sum[d[j], {j, 1, 30}], 50]
RealDigits[c1, 10, 50, -1] (* A190412 *)
c2 = N[Sum[e[i], {i, 1, 30}], 50]
RealDigits[c2, 10, 50, -1] (* A190415 *)
c1 + c2 (* very close to 1 *)
PROG
(Sage)
def A190415(b): # Generate the constant with b bits of precision
return N(sum([sum([(1/2)^(i+j+(j+2*i-2)*(j+2*i-1)/2) for i in range(1, b)]) for j in range(1, b)]), b)
A190415(379) # Danny Rorabaugh, Mar 26 2015
CROSSREFS
Sequence in context: A290278 A300894 A328258 * A024602 A367269 A131603
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 10 2011
EXTENSIONS
a(50)-a(111) from Danny Rorabaugh, Mar 26 2015
STATUS
approved