This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190412 Decimal expansion of sum over upper triangular subarray of array G defined at A190404. 3
 8, 5, 6, 3, 5, 0, 3, 9, 5, 6, 0, 9, 7, 7, 9, 5, 7, 3, 9, 8, 1, 4, 6, 1, 8, 2, 3, 9, 9, 1, 4, 2, 4, 5, 4, 4, 8, 9, 9, 2, 9, 3, 9, 9, 9, 7, 1, 4, 3, 7, 9, 7, 5, 3, 2, 6, 2, 7, 5, 2, 1, 0, 4, 0, 3, 7, 2, 3, 4, 0, 7, 0, 1, 8, 5, 0, 2, 9, 5, 7, 7, 2, 2, 8, 7, 3, 0, 4, 3, 7, 1, 8, 1, 0, 9, 5, 6, 1, 1, 8, 8, 7, 1, 9, 2, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A190404. LINKS Danny Rorabaugh, Table of n, a(n) for n = 0..500 EXAMPLE 0.85635039560977957398146182399142454489929399971437975... MATHEMATICA f[i_, j_] :=  i + (j + i - 2)(j + i - 1)/2; (* natural number array, A000027 *) g[i_, j_] := (1/2)^f[i, j]; d[h_] := Sum[g[i, i+h-1], {i, 1, 250}]; (* h-th up-diag sum *) e[h_] := Sum[g[i+h, i], {i, 1, 250}];   (* h-th low-diag sum *) c1 = N[Sum[d[j], {j, 1, 30}], 50] RealDigits[c1, 10, 50, -1]  (* A190412 *) c2 = N[Sum[e[i], {i, 1, 30}], 50] RealDigits[c2, 10, 50, -1] (* A190415 *) c1 + c2 (* very close to 1 *) PROG (Sage) def A190412(b): # Generate the constant with b bits of precision ..return N(sum([sum([(1/2)^(i+(j+2*i-3)*(j+2*i-2)/2) for i in range(1, b)]) for j in range(1, b)]), b) A190412(365) # Danny Rorabaugh, Mar 26 2015 CROSSREFS Cf. A190404, A190415. Sequence in context: A154433 A107828 A256155 * A199615 A199059 A065415 Adjacent sequences:  A190409 A190410 A190411 * A190413 A190414 A190415 KEYWORD nonn,cons AUTHOR Clark Kimberling, May 10 2011 EXTENSIONS a(49) corrected and a(50)-a(105) added by Danny Rorabaugh, Mar 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:32 EDT 2019. Contains 323478 sequences. (Running on oeis4.)