login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190396
Number of ways to place 4 nonattacking grasshoppers on a chessboard of size n x n.
4
0, 1, 78, 1278, 10002, 50191, 189208, 584958, 1563488, 3737987, 8181786, 16669638, 32003238, 58438623, 102234772, 172344406, 281269668, 446107043, 689807558, 1042679982, 1544166426, 2244921423, 3209227248, 4517779918
OFFSET
1,3
COMMENTS
The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.
FORMULA
a(n) = 1/24*(n^8 -6*n^6 -80*n^5 +431*n^4 -552*n^3 -666*n^2 +2168*n -1392), n>2.
G.f.: -x^2*(2*x^9 -22*x^8 +50*x^7 +78*x^6 -89*x^5 -245*x^4 +1224*x^3 +612*x^2 +69*x +1)/(x-1)^9.
MATHEMATICA
CoefficientList[Series[- x (2 x^9 - 22 x^8 + 50 x^7 + 78 x^6 - 89 x^5 - 245 x^4 + 1224 x^3 + 612 x^2 + 69 x + 1) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
CROSSREFS
Sequence in context: A272383 A027786 A175383 * A230521 A264362 A160839
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 10 2011
STATUS
approved