Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Jan 15 2018 03:10:30
%S 1,1,0,-4,-12,4,240,1184,-1008,-59504,-401280,643136,38584128,
%T 323581504,-848090880,-51666451456,-509739310848,2004840714496,
%U 123888658698240,1386061762251776,-7721141999864832,-483475390212586496,-5974101514137292800,45231727252157947904
%N E.g.f. A(x) satisfies A'(x) = sin(A(x)) + cos(A(x)).
%C Let f(x) be a smooth function. The autonomous differential equation A'(x) = f(A(x)), with initial condition A(0) = 0, is separable and the solution is given by A(x) = inverse function of Integral_{t = 0..x} 1/f(t) dt. The inversion of the integral Integral_{t = 0..x} 1/f(t) dt is most conveniently found by applying [Dominici, Theorem 4.1]. The result is A(x) = Sum_{n>=1} D^(n-1)[f](0)*x^n/n!, where the nested derivative D^n[f](x)is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = (d/dx)(f(x)*D^n[f](x)) for n >= 0. See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x). In the present case we take f(x) = sin(x)+cos(x). - _Peter Bala_, Aug 27 2011
%H Alois P. Heinz, <a href="/A190392/b190392.txt">Table of n, a(n) for n = 1..200</a>
%H D. Dominici, <a href="http://arxiv.org/abs/math/0501052">Nested derivatives: A simple method for computing series expansions of inverse functions.</a> arXiv:math/0501052v2 [math.CA], 2005.
%F E.g.f.: A(x) = inverse of Integral_{t = 0..x} 1/(sin(t)+cos(t)) dt = series reversion (x - x^2/2! + 3*x^3/3! - 11*x^4/4! + 57*x^5/5! - ...) = x + x^2/2! - 4*x^4/4! - 12*x^5/5! + .... a(n) = D^(n-1)[sin(x)+cos(x)](0), where the nested derivative operator D^n is defined above. Compare with A012244. -_Peter Bala_, Aug 27 2011
%F E.g.f.: A(x) = 2*arctan((sqrt(2)-1)*exp(sqrt(2)*x))-Pi/4. Compare with A028296. - _Peter Bala_, Sep 02 2011
%F G.f.: 1/G(0) where G(k) = 1 - 2*x*(k+1)/(1 + 1/(1 - 2*x*(k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 10 2013.
%F G.f.: -(1/x)/Q(0), where Q(k)= 2*k+1 - 1/x + (k+1)*(k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Apr 15 2013
%F G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 + (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 17 2013
%F E.g.f. if offset 0: 2^(1/2)/(2^(1/2)*cosh(x*2^(1/2))-sinh(x*2^(1/2))). - _Sergei N. Gladkovskii_, Nov 10 2013
%F a(n) ~ -(n-1)! * 2^(3*n/2+1) * sin(n*arctan(Pi/log(3 - 2*sqrt(2)))) / (Pi^2 + log(3 - 2*sqrt(2))^2)^(n/2). - _Vaclav Kotesovec_, Jan 07 2014
%p A := x ; for i from 1 to 35 do sin(A)+cos(A) ; convert(taylor(%,x=0,25),polynom) ; A := int(%,x) ; print(A) ; end do:
%p for i from 1 to 25 do printf("%d,", coeftayl(A,x=0,i)*i!) ; end do: # _R. J. Mathar_, Jun 03 2011
%t terms = 25; A[_] = 0; Do[A[x_] = Integrate[Sin[A[x]] + Cos[A[x]], x] + O[x]^terms, terms]; CoefficientList[A[x], x]*Range[0, terms-1]! (* _Jean-François Alcover_, Feb 21 2013, updated Jan 15 2018 *)
%o (Maxima)
%o g(n):=(-1)^floor(n/2)*1/n!;
%o a(n):=T190015_Solve(n,g);
%Y Cf. A001586, A012244, A028296.
%K sign
%O 1,4
%A _Vladimir Kruchinin_, May 09 2011