The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190378 Numbers with prime factorization p*q*r*s*t*u^3 (where p, q, r, s, t, u are distinct primes). 3
 120120, 157080, 175560, 185640, 207480, 212520, 251160, 267960, 270270, 271320, 286440, 291720, 316680, 326040, 328440, 338520, 341880, 353430, 367080, 378840, 394680, 395010, 397320, 404040, 408408, 414120, 417690, 426360, 434280, 442680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Will Nicholes, Prime Signatures EXAMPLE From Petros Hadjicostas, Oct 26 2019: (Start) a(1) = (2^3)*3*5*7*11*13 = 120120; a(2) = (2^3)*3*5*7*11*17 = 157080, a(3) = (2^3)*3*5*7*11*19 = 175560; a(4) = (2^3)*3*5*7*13*17 = 185640; a(5) = (2^3)*3*5*7*13*19 = 207480; a(6) = (2^3)*3*5*7*11*23 = 212520; a(7) = (2^3)*3*5*7*13*23 = 251160; a(8) = (2^3)*3*5*7*11*29 = 267960; a(9) = 2*(3^3)*5*7*11*13 = 270270. (End) MATHEMATICA f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 1, 1, 1, 3}; Select[Range[1000000], f] PROG (PARI) list(lim)=my(v=List(), t1, t2, t3, t4, t5); forprime(p=2, sqrtnint(lim\2310, 3), t1=p^3; forprime(q=2, lim\(210*t1), if(q==p, next); t2=q*t1; forprime(r=2, lim\(30*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\(6*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2, lim\(2*t4), if(t==p || t==q || t==r || t==s, next); t5=t*t4; forprime(u=2, lim\t5, if(u==p || u==q || u==r || u==s || u==t, next); listput(v, t5*u))))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016 CROSSREFS Cf. A190110, A190111. Sequence in context: A236094 A043622 A272597 * A092015 A250673 A278005 Adjacent sequences:  A190375 A190376 A190377 * A190379 A190380 A190381 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, May 09 2011 EXTENSIONS Name edited by Petros Hadjicostas, Oct 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 08:05 EST 2020. Contains 338618 sequences. (Running on oeis4.)