This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190361 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=sqrt(5/4), t=sqrt(4/5). 3
 2, 5, 8, 11, 14, 17, 20, 23, 27, 29, 32, 35, 38, 41, 44, 47, 51, 54, 56, 59, 62, 65, 68, 71, 74, 78, 81, 84, 86, 89, 92, 95, 98, 102, 105, 108, 111, 113, 116, 119, 122, 125, 129, 132, 135, 138, 141, 143, 146, 149, 153, 156, 159, 162, 165, 168, 170, 173, 176, 180, 183, 186, 189, 192, 195, 198, 200, 204, 207, 210, 213, 216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that f(n) = n + [n*s/r] + [n*t/r], g(n) = n + [n*r/s] + [n*t/s], h(n) = n + [n*r/t] + [n*s/t], where []=floor. Taking r=1, s=sqrt(5/4), t=sqrt(4/5) gives f=A190361, g=A190362, h=A190363. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A190361:  f(n) = n + [n*sqrt(5/4)] + [n*sqrt(4/5)]. A190362:  g(n) = n + [n*sqrt(4/5)] + [4*n/5]. A190363:  h(n) = 2*n + [n*sqrt(5/4)] + [n/4]. MATHEMATICA r=1; s=(5/4)^(1/2); t=1/s; f[n_] := n + Floor[n*s/r] + Floor[n*t/r]; g[n_] := n + Floor[n*r/s] + Floor[n*t/s]; h[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[f[n], {n, 1, 120}]  (* A190361 *) Table[g[n], {n, 1, 120}]  (* A190362 *) Table[h[n], {n, 1, 120}]  (* A190363 *) PROG (PARI) for(n=1, 100, print1(n + floor(n*sqrt(5/4)) + floor(n*sqrt(4/5)), ", ")) \\ G. C. Greubel, Apr 05 2018 (MAGMA) [n + Floor(n*Sqrt(5/4)) + Floor(n*Sqrt(4/5)): n in [1..100]]; // G. C. Greubel, Apr 05 2018 CROSSREFS Cf. A190362, A190363, A190347. Sequence in context: A190082 A165334 A189512 * A184905 A279773 A184910 Adjacent sequences:  A190358 A190359 A190360 * A190362 A190363 A190364 KEYWORD nonn AUTHOR Clark Kimberling, May 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 16:37 EDT 2019. Contains 327967 sequences. (Running on oeis4.)