This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190328 n + [n*r/t] + [n*s/t];  r=1/2, s=sinh(pi/2), t=cosh(pi/2). 4
 1, 3, 5, 7, 9, 12, 14, 16, 18, 20, 23, 25, 26, 28, 30, 33, 35, 37, 39, 41, 44, 46, 48, 50, 51, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 76, 77, 79, 81, 83, 86, 88, 90, 92, 94, 97, 99, 101, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 139, 141, 143, 145, 147, 150, 152, 153, 155, 157, 160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A190326. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A190326:  f(n) = n + [2*n*sinh(Pi/2)] + [2*n*cosh(Pi/2)]. A190327:  g(n) = n + [n*csch(Pi/2)/2] + [n*coth(Pi/2)]. A190328:  h(n) = n + [n*sech(Pi/2)/2] + [n*tanh(Pi/2)]. MAPLE r:=1/2: s:=sinh(Pi/2): t:=cosh(Pi/2): seq(n+floor(n*r/t)+floor(n*s/t), n=1..80); # Muniru A Asiru, Apr 05 2018 MATHEMATICA r=1/2; s=Sinh[Pi/2]; t=Cosh[Pi/2]; f[n_] := n + Floor[n*s/r] + Floor[n*t/r]; g[n_] := n + Floor[n*r/s] + Floor[n*t/s]; h[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[f[n], {n, 1, 120}]  (*A190326*) Table[g[n], {n, 1, 120}]  (*A190327*) Table[h[n], {n, 1, 120}]  (*A190328*) PROG (PARI) for(n=1, 100, print1(n + floor(n/(2*cosh(Pi/2))) + floor(n*tanh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018 (MAGMA) R:=RealField(); [n + Floor(n/(2*Cosh(Pi(R)/2))) + Floor(n*Tanh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018 CROSSREFS Cf. A190326, A190327. Sequence in context: A038663 A291154 A246405 * A248106 A033036 A198082 Adjacent sequences:  A190325 A190326 A190327 * A190329 A190330 A190331 KEYWORD nonn AUTHOR Clark Kimberling, May 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 01:22 EST 2019. Contains 329978 sequences. (Running on oeis4.)