login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190327 n + [n*r/s] + [n*t/s];  r=1/2, s=sinh(pi/2), t=cosh(pi/2). 4
2, 4, 6, 8, 11, 13, 15, 17, 19, 22, 24, 27, 29, 32, 34, 36, 38, 40, 43, 45, 47, 49, 52, 55, 57, 59, 61, 64, 66, 68, 70, 72, 75, 78, 80, 82, 85, 87, 89, 91, 93, 96, 98, 100, 103, 105, 108, 110, 112, 114, 117, 119, 121, 123, 125, 129, 131, 133, 135, 138, 140, 142, 144, 146, 149, 151, 154, 156, 158, 161, 163, 165, 167, 170 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A190326.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

A190326:  f(n) = n + [2*n*sinh(Pi/2)] + [2*n*cosh(Pi/2)].

A190327:  g(n) = n + [n*csch(Pi/2)/2] + [n*coth(Pi/2)].

A190328:  h(n) = n + [n*sech(Pi/2)/2] + [n*tanh(Pi/2)].

MAPLE

r:=1/2: s:=sinh(Pi/2): t:=cosh(Pi/2): seq(n+floor(n*r/s)+floor(n*t/s), n=1..80); # Muniru A Asiru, Apr 05 2018

MATHEMATICA

r=1/2; s=Sinh[Pi/2]; t=Cosh[Pi/2];

f[n_] := n + Floor[n*s/r] + Floor[n*t/r];

g[n_] := n + Floor[n*r/s] + Floor[n*t/s];

h[n_] := n + Floor[n*r/t] + Floor[n*s/t];

Table[f[n], {n, 1, 120}]  (*A190326*)

Table[g[n], {n, 1, 120}]  (*A190327*)

Table[h[n], {n, 1, 120}]  (*A190328*)

PROG

(PARI) for(n=1, 100, print1(n + floor(n/(2*sinh(Pi/2))) + floor(n/tanh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018

(MAGMA) R:=RealField(); [n + Floor(n/(2*Sinh(Pi(R)/2))) + Floor(n/Tanh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018

CROSSREFS

Cf. A190326, A190328.

Sequence in context: A327255 A287777 A249099 * A241176 A184809 A022839

Adjacent sequences:  A190324 A190325 A190326 * A190328 A190329 A190330

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 22:16 EST 2019. Contains 329383 sequences. (Running on oeis4.)