login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190326 n + [n*s/r] + [n*t/r]; r=1/2, s=sinh(Pi/2), t=cosh(Pi/2). 4
10, 21, 31, 42, 53, 63, 74, 84, 95, 106, 116, 127, 137, 148, 159, 169, 180, 190, 201, 212, 222, 233, 243, 254, 265, 275, 286, 296, 307, 318, 328, 339, 349, 360, 371, 381, 392, 402, 413, 424, 434, 445, 455, 466, 477, 487, 498, 508, 519, 530, 540, 551, 561, 572 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that

f(n) = n + [n*s/r] + [n*t/r],

g(n) = n + [n*r/s] + [n*t/s],

h(n) = n + [n*r/t] + [n*s/t], where []=floor.

Taking r=1/2, s=sinh(Pi/2), t=cosh(Pi/2) gives

f=A190326, g=A190327, h=A190328.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

A190326:  f(n) = n + [2*n*sinh(Pi/2)] + [2*n*cosh(Pi/2)].

A190327:  g(n) = n + [n*csch(Pi/2)/2] + [n*coth(Pi/2)].

A190328:  h(n) = n + [n*sech(Pi/2)/2] + [n*tanh(Pi/2)].

MATHEMATICA

r=1/2; s=Sinh[Pi/2]; t=Cosh[Pi/2];

f[n_] := n + Floor[n*s/r] + Floor[n*t/r];

g[n_] := n + Floor[n*r/s] + Floor[n*t/s];

h[n_] := n + Floor[n*r/t] + Floor[n*s/t];

Table[f[n], {n, 1, 120}]  (*A190326*)

Table[g[n], {n, 1, 120}]  (*A190327*)

Table[h[n], {n, 1, 120}]  (*A190328*)

PROG

(PARI) for(n=1, 100, print1(n + floor(2*n*sinh(Pi/2)) + floor(2*n*cosh(Pi/2)), ", ")) \\ G. C. Greubel, Apr 04 2018

(MAGMA) R:=RealField(); [n + Floor(2*n*Sinh(Pi(R)/2)) + Floor(2*n*Cosh(Pi(R)/2)): n in [1..100]]; // G. C. Greubel, Apr 04 2018

CROSSREFS

Cf. A190327, A190328.

Sequence in context: A265415 A245071 A256825 * A185691 A042291 A041194

Adjacent sequences:  A190323 A190324 A190325 * A190327 A190328 A190329

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)