

A190290


Decimal expansion of (3+sqrt(21))/3.


2



2, 5, 2, 7, 5, 2, 5, 2, 3, 1, 6, 5, 1, 9, 4, 6, 6, 6, 8, 8, 6, 2, 6, 8, 2, 3, 9, 7, 9, 0, 9, 3, 3, 6, 1, 6, 2, 9, 9, 4, 8, 1, 8, 8, 5, 8, 9, 2, 2, 6, 5, 7, 3, 0, 0, 8, 6, 9, 0, 8, 0, 7, 0, 7, 9, 6, 8, 9, 5, 6, 1, 4, 1, 8, 4, 9, 2, 5, 6, 9, 6, 2, 2, 0, 1, 4, 5, 3, 8, 5, 3, 1, 6, 4, 4, 8, 1, 6, 7, 7, 5, 5, 9, 2, 0, 0, 3, 0, 1, 7, 9, 9, 1, 9, 5, 2, 4, 6, 9, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The rectangle R whose shape (i.e., length/width) is (3+sqrt(21))/3, can be partitioned into rectangles of shapes 3/2 and 2 in a manner that matches the periodic continued fraction [2, 3/2, 2, 3/2, ...]. R can also be partitioned into squares so as to match the periodic continued fraction [2,1,1,8,1,1,2,1,1,8,1,1,2,,...]. For details, see A188635.


LINKS

Table of n, a(n) for n=1..120.


EXAMPLE

2.527525231651946668862682397909336162995...


MATHEMATICA

FromContinuedFraction[{2, 3/2, {2, 3/2}}]
ContinuedFraction[%, 100] (* [2, 1, 1, 8, 1, 1, 2, ... *)
RealDigits[N[%%, 120]] (* A190290 *)
N[%%%, 40]


CROSSREFS

Cf. A188635, A190289.
Sequence in context: A327838 A086956 A198570 * A246341 A246355 A016580
Adjacent sequences: A190287 A190288 A190289 * A190291 A190292 A190293


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, May 07 2011


STATUS

approved



