OFFSET
1,1
COMMENTS
The rectangle R whose shape (i.e., length/width) is 1+sqrt(1+sqrt(2)) can be partitioned into rectangles of shapes 2 and sqrt(2) in a manner that matches the periodic continued fraction [2, r, 2, r, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,1,1,4,6,1,2,2,2,1,1,6,...] at A190284. For details, see A188635.
A quartic integer with minimal polynomial x^4 - 4x^3 + 4x^2 - 2. - Charles R Greathouse IV, Feb 09 2017
LINKS
EXAMPLE
2.553773974030037307344158953063146948165...
MATHEMATICA
r=2^(1/2)
FromContinuedFraction[{2, r, {2, r}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190284 *)
RealDigits[N[%%, 120]] (* A190283 *)
N[%%%, 40]
RealDigits[1+Sqrt[1+Sqrt[2]], 10, 120][[1]] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) sqrt(sqrt(2)+1)+1 \\ Charles R Greathouse IV, Feb 09 2017
(PARI) polrootsreal(x^4 - 4*x^3 + 4*x^2 - 2)[2] \\ Charles R Greathouse IV, Feb 09 2017
(Magma) 1+Sqrt(1+Sqrt(2)); // G. C. Greubel, Apr 14 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 07 2011
STATUS
approved