

A190263


Continued fraction of (3 + sqrt(9 + 12*sqrt(3)))/6.


2



1, 2, 2, 3, 1, 3, 2, 1, 1, 1, 1, 8, 2, 17, 2, 3, 10, 2, 23, 1, 4, 1, 2, 1, 4, 1, 2, 35, 4, 1, 1, 1, 2, 5, 4, 1, 1, 3, 17, 3, 2, 1, 3, 1, 3, 1, 1, 10, 3, 1, 13, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 15, 3, 2, 5, 6, 2, 1, 15, 132, 4, 2, 1, 1, 19, 1, 4, 1, 2, 5, 2, 16, 2, 1, 15, 5, 2, 10, 13, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Equivalent to the periodic continued fraction [1, x, 1, x,...], where x=sqrt(3). (See A188635.)


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


MATHEMATICA

r=3^(1/2)
FromContinuedFraction[{1, r, {1, r}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190263 *)
RealDigits[N[%%, 120]] (* A190262 *)
N[%%%, 40]
ContinuedFraction[(3 + Sqrt[9 + 12*Sqrt[3]])/6, 100] (* G. C. Greubel, Dec 26 2017 *)


PROG

(PARI) contfrac((3+sqrt(9+sqrt(432)))/6) \\ Charles R Greathouse IV, Jul 29 2011
(MAGMA) ContinuedFraction((3 + sqrt(9 + 12*sqrt(3)))/6); // G. C. Greubel, Dec 28 2017


CROSSREFS

Cf. A188635, A190262.
Sequence in context: A265576 A083040 A083899 * A144911 A233431 A160650
Adjacent sequences: A190260 A190261 A190262 * A190264 A190265 A190266


KEYWORD

nonn,cofr


AUTHOR

Clark Kimberling, May 06 2011


STATUS

approved



