The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190260 Decimal expansion of (1 + sqrt(1 + 2*x))/2, where x=sqrt(2). 3
 1, 4, 7, 8, 3, 1, 8, 3, 4, 3, 4, 7, 8, 5, 1, 5, 9, 5, 6, 4, 2, 2, 1, 0, 4, 4, 3, 6, 3, 8, 5, 0, 2, 2, 2, 1, 5, 2, 5, 3, 2, 1, 2, 1, 1, 5, 0, 4, 9, 9, 0, 6, 4, 1, 6, 7, 0, 8, 4, 0, 3, 9, 1, 0, 2, 6, 4, 9, 9, 8, 0, 5, 4, 3, 7, 0, 5, 7, 3, 3, 2, 3, 3, 6, 7, 5, 1, 8, 8, 2, 0, 7, 4, 0, 8, 2, 1, 3, 6, 6, 9, 7, 8, 1, 0, 9, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The rectangle R whose shape (i.e., length/width) is (1+sqrt(1+2x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes 1 and sqrt(2) in a manner that matches the periodic continued fraction [1, x, 1, x, ...].  R can also be partitioned into squares so as to match the nonperiodic continued fraction [1, 2,11,32,1,4,10,2,1,...] at A190261.  For details, see A188635. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE 1.478318343478515956422104436385022215253... MATHEMATICA r=2^(1/2); FromContinuedFraction[{1, r, {1, r}}] FullSimplify[%] ContinuedFraction[%, 100]  (* A190261 *) RealDigits[N[%%, 120]]     (* A190260 *) N[%%%, 40] PROG (PARI) (1+sqrt(1+2*sqrt(2)))/2 \\ G. C. Greubel, Dec 26 2017 (MAGMA) [(1+Sqrt(1+2*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017 CROSSREFS Cf. A188635, A190262, A190258. Sequence in context: A275977 A151968 A115632 * A318383 A151958 A176778 Adjacent sequences:  A190257 A190258 A190259 * A190261 A190262 A190263 KEYWORD nonn,cons AUTHOR Clark Kimberling, May 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 14:11 EDT 2021. Contains 342936 sequences. (Running on oeis4.)