login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190260 Decimal expansion of (1 + sqrt(1 + 2*x))/2, where x=sqrt(2). 3
1, 4, 7, 8, 3, 1, 8, 3, 4, 3, 4, 7, 8, 5, 1, 5, 9, 5, 6, 4, 2, 2, 1, 0, 4, 4, 3, 6, 3, 8, 5, 0, 2, 2, 2, 1, 5, 2, 5, 3, 2, 1, 2, 1, 1, 5, 0, 4, 9, 9, 0, 6, 4, 1, 6, 7, 0, 8, 4, 0, 3, 9, 1, 0, 2, 6, 4, 9, 9, 8, 0, 5, 4, 3, 7, 0, 5, 7, 3, 3, 2, 3, 3, 6, 7, 5, 1, 8, 8, 2, 0, 7, 4, 0, 8, 2, 1, 3, 6, 6, 9, 7, 8, 1, 0, 9, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The rectangle R whose shape (i.e., length/width) is (1+sqrt(1+2x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes 1 and sqrt(2) in a manner that matches the periodic continued fraction [1, x, 1, x, ...].  R can also be partitioned into squares so as to match the nonperiodic continued fraction [1, 2,11,32,1,4,10,2,1,...] at A190261.  For details, see A188635.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

1.478318343478515956422104436385022215253...

MATHEMATICA

r=2^(1/2);

FromContinuedFraction[{1, r, {1, r}}]

FullSimplify[%]

ContinuedFraction[%, 100]  (* A190261 *)

RealDigits[N[%%, 120]]     (* A190260 *)

N[%%%, 40]

PROG

(PARI) (1+sqrt(1+2*sqrt(2)))/2 \\ G. C. Greubel, Dec 26 2017

(MAGMA) [(1+Sqrt(1+2*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017

CROSSREFS

Cf. A188635, A190262, A190258.

Sequence in context: A275977 A151968 A115632 * A318383 A151958 A176778

Adjacent sequences:  A190257 A190258 A190259 * A190261 A190262 A190263

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, May 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 21:01 EDT 2019. Contains 328225 sequences. (Running on oeis4.)