

A190258


Decimal expansion of (x + sqrt(2 + 4x))/2, where x=sqrt(2).


3



2, 0, 9, 0, 6, 5, 7, 8, 5, 0, 8, 5, 2, 2, 4, 4, 7, 7, 5, 7, 1, 0, 0, 8, 9, 6, 3, 5, 0, 0, 5, 2, 2, 1, 3, 2, 8, 0, 9, 5, 8, 8, 0, 1, 7, 1, 5, 3, 5, 0, 8, 9, 6, 1, 5, 2, 7, 0, 1, 5, 4, 0, 8, 0, 1, 3, 6, 5, 3, 8, 6, 8, 6, 5, 8, 2, 3, 0, 1, 7, 6, 3, 7, 1, 1, 4, 3, 1, 5, 0, 4, 0, 4, 6, 0, 4, 2, 6, 3, 8, 4, 6, 7, 1, 8, 0, 8, 3, 2, 7, 8, 0, 6, 7, 6, 9, 3, 2, 5, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The rectangle R whose shape (i.e., length/width) is (x+sqrt(2+4x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes sqrt(2) and 1 in a manner that matches the periodic continued fraction [x, 1, x, 1, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,11,32,1,4,10,2,1,...] at A190259. For details, see A188635.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


EXAMPLE

2.090657850852244775710089635005221328095...


MATHEMATICA

r=2^(1/2);
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190258 *)
RealDigits[N[%%, 120]] (* A190259 *)
N[%%%, 40]


PROG

(PARI) sqrt(1/2)+sqrt(1/2+sqrt(2))
(MAGMA) [(Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017


CROSSREFS

Cf. A190259, A190260, A188635.
Sequence in context: A140415 A105819 A153616 * A161119 A019750 A308473
Adjacent sequences: A190255 A190256 A190257 * A190259 A190260 A190261


KEYWORD

nonn,easy,cons


AUTHOR

Clark Kimberling, May 06 2011


STATUS

approved



