OFFSET
1,1
COMMENTS
The rectangle R whose shape (i.e., length/width) is (x+sqrt(2+4x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes sqrt(2) and 1 in a manner that matches the periodic continued fraction [x, 1, x, 1, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,11,32,1,4,10,2,1,...] at A190259. For details, see A188635.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
2.090657850852244775710089635005221328095...
MATHEMATICA
r=2^(1/2);
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190258 *)
RealDigits[N[%%, 120]] (* A190259 *)
N[%%%, 40]
RealDigits[(Sqrt[2]+Sqrt[2+4Sqrt[2]])/2, 10, 120][[1]] (* Harvey P. Dale, Jun 20 2021 *)
PROG
(PARI) sqrt(1/2)+sqrt(1/2+sqrt(2))
(Magma) [(Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved