login
A190246
Positions of 0 in A190245; complement of A190247.
3
3, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 27, 28, 29, 32, 34, 37, 39, 40, 44, 45, 46, 49, 51, 52, 56, 57, 58, 61, 63, 64, 68, 69, 73, 74, 75, 78, 80, 81, 85, 86, 87, 90, 92, 93, 97, 98, 99, 102, 103, 104, 107, 109, 110, 114, 115, 116, 119, 121, 122, 126, 127, 128, 131, 133, 134, 136, 138, 139, 143, 144, 145, 148, 150, 151, 155, 156
OFFSET
1,1
COMMENTS
n such that floor(3*sqrt(2)*n) = floor(sqrt(2)*n) + floor(2*sqrt(2)*n). - Robert Israel, Jan 08 2017
LINKS
MAPLE
g:= proc(n) floor(3*sqrt(2)*n) - floor(sqrt(2)*n)-floor(2*sqrt(2)*n) end proc:
select(g=0, [$1..1000]); # Robert Israel, Jan 08 2017
MATHEMATICA
u = 2^(1/2); v = 2u;
f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v]
t = Table[f[n], {n, 1, 120}] (*A190245*)
Flatten[Position[t, 0]] (*A190246*)
Flatten[Position[t, 1]] (*A190247*)
CROSSREFS
Sequence in context: A047366 A184776 A202104 * A117483 A213513 A344168
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved