login
A190224
a(n) = [n*u + n*v] - [n*u] - [n*v], where u=sin(Pi/3), v=cos(Pi/3), and []=floor.
4
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0
OFFSET
1
LINKS
MATHEMATICA
u = Sin[Pi/3]; v = Cos[Pi/3];
f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v]
t = Table[f[n], {n, 1, 120}] (* A190224 *)
Flatten[Position[t, 0]] (* A190225 *)
Flatten[Position[t, 1]] (* A190226 *)
PROG
(PARI) for(n=1, 30, print1(floor(n*(sin(Pi/3) + cos(Pi/3))) - floor(n*cos(Pi/3)) - floor(n*sin(Pi/3)), ", ")) \\ G. C. Greubel, Dec 27 2017
(Magma) C<i> := ComplexField(); [Floor(n*Sin(Pi(C)/3) + n*Cos(Pi(C)/3)) - Floor(n*Sin(Pi(C)/3)) - Floor(n*Cos(Pi(C)/3)): n in [1..30]]; // G. C. Greubel, Dec 27 2017
CROSSREFS
Sequence in context: A087032 A236677 A190236 * A352678 A373371 A321692
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 06 2011
STATUS
approved