login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190224 a(n) = [n*u + n*v] - [n*u] - [n*v], where u=sin(Pi/3), v=cos(Pi/3), and []=floor. 4
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

u = Sin[Pi/3]; v = Cos[Pi/3];

f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v]

t = Table[f[n], {n, 1, 120}] (* A190224 *)

Flatten[Position[t, 0]]      (* A190225 *)

Flatten[Position[t, 1]]      (* A190226 *)

PROG

(PARI) for(n=1, 30, print1(floor(n*(sin(Pi/3) + cos(Pi/3))) - floor(n*cos(Pi/3)) - floor(n*sin(Pi/3)), ", ")) \\ G. C. Greubel, Dec 27 2017

(MAGMA) C<i> := ComplexField(); [Floor(n*Sin(Pi(C)/3) + n*Cos(Pi(C)/3)) - Floor(n*Sin(Pi(C)/3)) - Floor(n*Cos(Pi(C)/3)): n in [1..30]]; // G. C. Greubel, Dec 27 2017

CROSSREFS

Cf. A180225, A180226.

Sequence in context: A087032 A236677 A190236 * A321692 A102242 A005369

Adjacent sequences:  A190221 A190222 A190223 * A190225 A190226 A190227

KEYWORD

nonn

AUTHOR

Clark Kimberling, May 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 10:23 EDT 2020. Contains 337289 sequences. (Running on oeis4.)