This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190218 Numbers all of whose divisors are numbers whose decimal digits are in strictly increasing order. 3
 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 125, 127, 134, 135, 136, 137, 138, 139, 145, 149, 157, 158, 167, 169, 178, 179, 235 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence is finite. Last term a(163) = 23456789. Subset of A009993. Superset of A052015. LINKS Nathaniel Johnston and Jaroslav Krizek, Table of n, a(n) for n = 1..163 (complete list) EXAMPLE Number 135 is in sequence because all divisors of 135 (1, 3, 5, 9, 15, 27, 45, 135) are numbers whose decimal digits are in strictly increasing order. MAPLE with(numtheory): A190218 := proc(n) option remember: local d, dd, i, j, k, m, poten: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=divisors(k): poten:=1: for i from 1 to nops(d) do m:=10: dd:=convert(d[i], base, 10): for j from 1 to nops(dd) do if(m>dd[j])then m:=dd[j]: else poten:=0: break: fi: od: if(poten=0)then break:fi: od: if(poten=1)then return k: fi: od: end: seq(A190218(n), n=1..62); # Nathaniel Johnston, May 06 2011 MATHEMATICA Select[Range[250], And@@Positive[Flatten[Differences/@(IntegerDigits/@Divisors[#])]]&] (* Harvey P. Dale, Mar 24 2012 *) CROSSREFS Sequence in context: A239216 A032848 A009993 * A055569 A277046 A305462 Adjacent sequences:  A190215 A190216 A190217 * A190219 A190220 A190221 KEYWORD nonn,fini,full,base AUTHOR Jaroslav Krizek, May 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 18:13 EDT 2019. Contains 321433 sequences. (Running on oeis4.)