%I #23 Aug 21 2023 12:39:33
%S 1,3,1,4,9,9,2,9,8,3,0,2,0,7,7,1,1,9,7,1,1,9,1,6,4,2,0,3,6,3,8,2,6,3,
%T 0,4,4,5,6,4,9,0,9,3,4,6,6,3,3,7,5,6,0,0,3,2,0,8,0,0,3,1,7,2,6,0,5,6,
%U 0,2,8,8,6,5,3,6,0,3,8,8,6,6,1,9,2,6,2,4,0,6,2,5,8,0,8,8,0,9,3,2,4,8,0,9,9,1,8,4,8,1,5,5,0,8,9,5,5,3,9,1
%N Decimal expansion of (1+sqrt(-3+4*sqrt(2)))/2.
%C Let R denote a rectangle whose shape (i.e., length/width) is (1+sqrt(-3+4*sqrt(2)))/2. R can be partitioned into squares and silver rectangles in a manner that matches the periodic continued fraction [1,r,1,r,...], where r is the silver ratio: 1+sqrt(2)=[2,2,2,2,2,...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [1,3,5,1,2,1,1,1,2,...] at A190180. For details, see A188635.
%C The real value a-1 is the only invariant point of the complex-plane mapping M(c,z)=sqrt(c-sqrt(c+z)), with c = sqrt(2), and its only attractor, convergent from any starting complex-plane location. - _Stanislav Sykora_, Apr 29 2016
%H Chai Wah Wu, <a href="/A190179/b190179.txt">Table of n, a(n) for n = 1..10001</a>
%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>
%F Equals 1+sqrt(c-sqrt(c+sqrt(c-sqrt(c+ ...)))), with c=sqrt(2). - _Stanislav Sykora_, Apr 29 2016
%e 1.314992983020771197119164203638263044565...
%t r = 1 + 2^(1/2));
%t FromContinuedFraction[{1, r, {1, r}}]
%t FullSimplify[%]
%t ContinuedFraction[%, 100] (* A190180 *)
%t RealDigits[N[%%, 120]] (* A190179 *)
%t N[%%%, 40]
%t RealDigits[(1+Sqrt[4Sqrt[2]-3])/2,10,120][[1]] _Harvey P. Dale_, May 19 2012
%o (PARI) (1+sqrt(-3+4*sqrt(2)))/2 \\ _Altug Alkan_, Apr 29 2016
%o (Magma) (1+Sqrt(-3+4*Sqrt(2)))/2; // _G. C. Greubel_, Dec 28 2017
%Y Cf. A188635, A190180, A190177, A190178.
%K nonn,cons
%O 1,2
%A _Clark Kimberling_, May 05 2011