login
A190178
Continued fraction of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2.
4
3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4
OFFSET
1,1
COMMENTS
Equivalent to the periodic continued fraction [r,1,r,1,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189977 and A188635.
LINKS
MATHEMATICA
r = 1 + 2^(1/2));
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190178 *)
RealDigits[N[%%, 120]] (* A190177 *)
N[%%%, 40]
ContinuedFraction[(1 + Sqrt[2] + Sqrt[7 + 6*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)
PROG
(PARI) contfrac((1+sqrt(2)+sqrt(7+6*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017
(Magma) ContinuedFraction((1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 05 2011
STATUS
approved