The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190178 Continued fraction of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2. 4
 3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalent to the periodic continued fraction [r,1,r,1,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189977 and A188635. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA r = 1 + 2^(1/2)); FromContinuedFraction[{r, 1, {r, 1}}] FullSimplify[%] ContinuedFraction[%, 100]  (* A190178 *) RealDigits[N[%%, 120]]     (* A190177 *) N[%%%, 40] ContinuedFraction[(1 + Sqrt[2] + Sqrt[7 + 6*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *) PROG (PARI) contfrac((1+sqrt(2)+sqrt(7+6*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017 (MAGMA) ContinuedFraction((1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017 CROSSREFS Cf. A188635, A190177, A190180. Sequence in context: A329593 A263490 A190180 * A010261 A281494 A226278 Adjacent sequences:  A190175 A190176 A190177 * A190179 A190180 A190181 KEYWORD nonn,cofr AUTHOR Clark Kimberling, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 17:41 EST 2020. Contains 338595 sequences. (Running on oeis4.)