

A190178


Continued fraction of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2.


4



3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalent to the periodic continued fraction [r,1,r,1,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189977 and A188635.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


MATHEMATICA

r = 1 + 2^(1/2));
FromContinuedFraction[{r, 1, {r, 1}}]
FullSimplify[%]
ContinuedFraction[%, 100] (* A190178 *)
RealDigits[N[%%, 120]] (* A190177 *)
N[%%%, 40]
ContinuedFraction[(1 + Sqrt[2] + Sqrt[7 + 6*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)


PROG

(PARI) contfrac((1+sqrt(2)+sqrt(7+6*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017
(MAGMA) ContinuedFraction((1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017


CROSSREFS

Cf. A188635, A190177, A190180.
Sequence in context: A329593 A263490 A190180 * A010261 A281494 A226278
Adjacent sequences: A190175 A190176 A190177 * A190179 A190180 A190181


KEYWORD

nonn,cofr


AUTHOR

Clark Kimberling, May 05 2011


STATUS

approved



